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Mean Spherical Model for Hard Ions and Dipoles: 
Thermodynamics and Correlation Functions 
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The solution of the mean spherical model of a mixture of equal-size hard ions 
and dipoles is reinvestigated. Simple expressions for the coefficients of the 
Laplace transform of the pair correlation function and the other thermo- 
dynamic properties are given. 
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1. I N T R O D U C T I O N  

In spite of  the progress achieved in the theory of ionic solutions, the statistical 
theory of ion-solvent interactions remains as one of the challenging problems 
awaiting a simple, yet accurate solution. 

The most  accurate theory for systems with long-range forces seems to be 
hypernetted chain equation (HNC), (1,2~ but this theory involves the resolution 
of a highly nonlinear system of equations, and is very difficult. A simplified 
version of it, the so-called linear hypernetted chain equation (LHNC), (s~ which 
is successful for hard dipoles, was applied to the case of  the ion-dipole mixture 
by Levesque et al. ~ for the infinite-dilution case. 

We should also mention the work on the solution of the Poisson Boltz- 
mann equation by Outhwaite (5~ and the recent mean field theory of Adelman 
and Chen, (6~ which seems to be a promising approach. 

The mean spherical approximation (MSA)(7-9~ is a theory that yields very 
simple expressions for the thermodynamic quantities, and which is reasonably 
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accurate for ionic solutions. The major deficiency of this theory is that it 
does not describe well the direct correlation function near the repulsive core 
of particles. This deficiency can be removed by the inclusion of a short-ranged 
exponential term. (~~ 

The solution of the MSA for the ion-dipole mixture was obtained by 
Blum ~2~ and Adelman and Deutch <z3~ for the equal-size mixture, and by 
Blum ~ for the unequal-size case. 

In the present work, we give further analytic results for the equal-size 
mixture of ions and dipoles. In Section 2 we review and complete some of the 
results of previous work. ~12~ In Section 3 we obtain the pair correlation 
function on the MSA, while Section 4 is devoted to the thermodynamics of 
the system. 

2. S U M M A R Y  OF P R E V I O U S  RESULTS 

Our model consists of a mixture of equal-size, hard spherical ions of 
charge z~e (z~ is the electrovalence, e is the elementary charge) and number 
density p~, and hard, spherical solvent molecules with dipole moment / ,  and 
number density pa. For further simplification we shall assume that there are 
only two species of ions (positive and negative) and we shall designate their 
concentrations by p + and p_. This assumption is not really necessary (equiva- 
lent results for an arbitrary mixture of equal-size ions are easily obtained), 
but will make our notation simpler. 

Let us, furthermore, designate the direct pair correlation functions cu(r ) 
and the indirect pair correlation functions h~j(r) by the generic symbolfj(r) .  
For the restricted case, we have ion-ion correlations f+ +(r),f+ _(r) = f_  +(r), 
and f_ _ (r), and ion-dipole correlations f+ a(r) and f_ a(r). 

As is the case in the primitive model, the ternary mixture of the positive 
and negative ions and the dipoles d can be reduced to a binary mixture if we 
introduce 

f~(r) = �89 +(r) - f+_(r)] = �89 - f_ +(r)] (2.1) 

f~a(1, 2) = �89 2) - f - a ( 1 ,  2)] (2.2) 

Following the notation of Wertheim, ~ls~ we expand the ion-dipole 
correlation functions in the invariant combination of spherical harmonics ~6~ 

f~a(1, 2) = --f~a(r)(f'g2) (2.3) 

A d O ,  2) = - V 3  f~(r)(gl. &) + (15/2)l'2f~(r)[3(e. el)(e. ~2) - (~1. &)] 
(2,4) 
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where r is the center-to-center vector. The module of  this vector is r, and P = 
r/r is the unit vector in the center-to-center direction. Here g~ is the unit vector 
in the directions of  the dipole o f  molecule c~. 

The invariant expansion can be t ransformed into the irreducible repre- 
sentation by choosing a reference frame in which P = z. This decouples the 
Ornstein-Zernike equation into matrix sets for correlations o f  different 
symmetry a round  the intermolecular axis, and is an essential step in the 
solution process. (16) 

We define 

~ , o ( r )  = 27rpof~(r), Po = P+ + P-  (2.5) 

~a,o(r)  = -2rr(papo/3)l/er drz fa(rl) (2.6) 

I'J7 ~aa,o(r) = 2rrpa - - ~  dr1 rlfa~a(rl) 

~e.l(r) = -2~pa ~ dr, r,f~(r,) 

+ 1 
~ f ~  dr, r , [ 3 ( ~ ) ' - 1 ] f a ~ ( r , ) }  (2.8) 

In the above expressions we used 

~ ( r )  = J(r)  or S(r)  (2.9) 

The matrix J(r) is a t ransform of  the indirect pair correlation function h(r), 
and h(r) is a t ransform of  the direct pair  correlation function e(r). 

In the Baxter factorization method,  we introduce another  correlation 
function Q(r)  through the factored Ornstein-Zernike equations (one set for 
each value o f  X) 

jo ~ 
J(r) = Q(r)  + dt J(r  - t )Q( t )  (2.10) 

L S(r) = D(r) + Q(r)  + dt Q(t)Q~(r  - t) (2.11) 

where, because of  the fact that  h(r) = 0 for r < 1 (1 = hard-core diameter), 
Q(r)  must  be a polynomial  of  the second degree for r < 1, and a constant  for  
r 1> 1 : Thus 

Q(r)  = (r - 1)Q' + �89 - 1)2Q " - A, r < 1 
(2.12) 

- A ,  r ~ >  1 
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For the MSA closure 

C(r) = - /3U(r )  

where /3 is the Boltzmann factor and U(r) is the potential interaction for 
r > 1. The coeff• for the invariant expansions (2.1)-(2.4) are 

U~(r) = e2/r, U~a(r) = e/~/r 2, Uda(r) = -(10/3)~/2/22/r3 (2.13) 

From here, and uring the transforms (2.5) and (2.8), we get for the matrix D 

.. [ do2e-2~M/2tz die -~1~1 sgn(r)] 
= n m  ] (2.14) D u-.o[-dle -~Irl sgn(r) 0 

where sgn(r) is the sign function, and 

do 2 = 47rpe2po (2.15) 

d22 = 4~r/3/x2pa (2.16) 

with/3 = 1/kT the Boltzmann factor and 

d~ = dod2 (2.17) 

(this notation is similar to Ref. 12). 
It can be shown that for r < 1, J(r) must be of the form 

J ( r ) =  [~0 bOo,]+ [ 0  1 bo]r+ [~ bzjO]r 2 (2.18) 

with 

f l  ~ 
bo = 27rpo dr~ r~h,(rl) (2.19) 

bl = 2r lj2 dr~ h~a(rl) (2.20) 

i 
oo 

b2 = 3rr(2/15)l/2pa dr~ h~a(rl)/rl (2.21) 

where, as we defined them in (2.1) and (2.2), the function h,(r) is the ion-ion 
pair correlation, h~a(r) is the ion-dipole pair correlation, and h~a(r) is the 

second coefficient of the dipole-dipole pair correlation. As we will see, b0, bl, 
and b2 are proportional to the charge-charge, charge-dipole, and dipole- 
dipole interactions. 
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The first step in the solution of the MSA for the mixture consists in 
obtaining the coefficient Q as functions of the parameters b0, b~, b2 [(2.19)- 
(2.21)]. Writing 

Q , =  [Q~ Q~a] (2.22) 
I_Q~ Q~dJ 

we have, from Ref. 12, after some algebra, 

Q;, = -�89 - t~8/DF) ~ + (b~/2DF) 2] (2.23) 

Q~a = -Q'a,  = (bl/4D~2)(f16 + �89 (2.24) 

O'aa = 6 - 12(1 + b6)/DF + (9/2)[(1 + bo)/DF] 2 + b~2/8D~3 (2.25) 

Furthermore, the second coefficient in (2.12) is 

with 

Q[~ + 2Q'e~ + ba/D~ (2.27) 

2Q;a = 24 - 30(1 + bo)/Du + 9(1 + bo)=/DF 2 + b,2/4DF 2 (2.28) 

Finally, we recall that 

 =io ~ 
with 

al = -(1/2DF2)(2fi6DF - A) (2.30) 

a2 = -(bz/2DF2fl6)(DFf3a + A/2) (2.31) 

(the expression for a2 is slightly different from that of Ref. 12, which is not 
correc0. 

In the above formulas we have used the definitions 

53 = 1 + ~b~, ~ = 1 - ~b~, 51~ = 1 + -A-b~, 524 = 1 - ~ b 2  

A = f16 2 q- l b 1 2  , AF = (1 + bo)b2 + �89 2 

DF = �89 + b6)/36 - ~2-bl 2] = �89 + bo - ~Av) (2.32) 

For the representations X = -+, we get the results of Wertheim ~15~ for 
the pure dipole case 

where we have used 

q' = -b2fi24/5~2 (2.33) 

q" = - b 2 y l  (2.34) 

y l  = ~6/5~2 (2 .3s)  



598 Fernando Verieat and Lesser Blum 

An interesting set of relations can be deduced from (2.11) and the analyticity 
of C(r) at r = 0: 

' -~[(Q~ + al) ~ + (Q~a + a2) 2] (2.36) O i i  ~--- 1 r 

v! ! 1 ii i Qa, --- - [ ( Q u  + al)(~Qa~ - Qa,) + (Q~a + az)(1Q'~a - Q'aa)] 

(2.37) 

Q;e - Qee = 1 r ( 1  O "  _ _  ( 1 / " 1 "  _ _  ' 2 ' ~aZ~aa  Q'~a) 2 + ,~:a~ Qa,) ] (2.38) 

From (2.23)-(2.31) we see that the combinations of coefficients appearing in 
the above set are particularly simple" 

Q~, + al = - 2  + 196/D• (2.39) 
t l / t Q,a + az = --~Qa~ + Qa, = - b ~ / 2 D u  (2.40) 

1 r '~ t t  t : ~ a a  - Qaa = 6 - 3(I + bo)/DF = - A H 2 D F  (2.41) 

where we have used the definitions (2.32). 
To obtain the actual values of the three parameters b0, bl, and b2, we 

have to consider the particular boundary condition of the MSA 

C(r) = - f lU(r) ,  r < 1 (2.42) 

From (2.11), using the transforms (2.5)-(2.7), we get (see Ref. 12) 

a12 + a22 = do2 (2.43) 

-a~Ka~ + a2(1 - Kaa) = -dod2  (2.44) 

K~, + (1 - Kaa) 2 = y 2  + do2 (2.45) 

where do and do are defined by (2. t 5) and 

K~e = dr Q~B(r) (2.46) 

1 o,, (2.47) = - � 8 9  + ~e~e 

From (2.43) and (2.44), and (2.25) and (2.26) of Ref. 12, we get the following 
simple relation: 

a ~ a  + a2b~/2 = d o y i k  (2.48) 

which can be rewritten as 

~a + (b~/2)A = y~A(1 + A2) ~/2 (2.49) 
with 

A = a2/a~ = +(b~/256)[(A + 2DF/3a)/(A - 2Dr/?6)] (2.50) 

We found that a very simple way of solving this problem is by assuming 
values of bo and b2 and solving (2.49) numerically for b~. It is clear that 
0 >  bo > l a n d 0  < b~. < 3. 
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Once the values of bo, b~, and b2 are known, we can compute the corre- 
sponding values of do and d2. 

Finally, if we combine (2.43) and (2.48) with the results of (2.22), etc., 
we obtain alternative expressions for the coefficients of the Baxter functions: 

Q~ = -�89 + bo) - b~d2] 2 - �89 2 (2.51) 

Q;a =/~6blYl  2 + (f16d2 - -l~bxdo)bzd2 + (1 + bo)do (2.52) 

Q'aa = 2 [ - 1  + f162yz 2 + (f16d2 - -~-bldo) 2] (2.53) 

3. PA IR  C O R R E L A T I O N  F U N C T I O N S  

Consider again Eq. (2.10), and let us define 

n ( r )  = -(�89 OJ(r)/~r, r >>, 1 

F(r) = -(�89 ~J(r)/~r,  r < 1 

Since, for r < 1, J(r)  is of the form (12~ 

J ( r ) = [ b 0  ~ b O o , ] + r [ ? b l  b01]+r2[~ b O] 

Then 

1 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

We now extend F(r) to the entire range of 0 < r < oe. Then, following a 
procedure similar to that of Hdye and Blum (lv~ [Section 2, Eq. (17)], we get, 
from the derivative of (2.10), 

fj G(r) = Q'(r)/2~- + dt G(r - t)Q(t) (3.5) 

where we have also extended Q'(r) to values of r > 1, and we used 

G(r) = H(r) - F(r) (3.6) 

Equation (3.5) is a convolution-type equation, which can be easily solved by 
Laplace transformation 

e-s  
~(s) = ~ (sQ' + Q")[I - 0(s)]  -1 (3.7) 

where Q' and Q" have been given by (2.22) and (2.26), while the Laplace 
transform of the Baxter function (2.12) 

X ( s )  = dr e-~rX(r) (X ---- Q) (3.8) 
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has matrix elements 

0_. = (1 / s )%(s )Q~  - (1/s)(Q~t + a~) 

Ota(s) = (1/s)cpo(s)Q~a - (1/s)(Q~a + a2) 

t lr t 1 t 2 ~t = - (1 /s )Qa~ Q_a,(s) (1 /s )%(s) (Oat  + Oat/s) + ( I / s ) ( -Oat  + zOat) 

(3.9) 

(3.10) 

(3.11) 

" S ' 1 0 "  ~ _ ( l l s 2 ) Q , ~ a  O_aa(s) =- (lls)q~o(s)(Q'ad + Qaal ) + ( l / s ) ( -Qaa  + ZzaaJ 
(3.i2) 

~o = (l/s)(1 - e -s) (3.13) 

The algebra involved in carrying out the calculations indicated by (3.7) is 
considerable. However, using the new expressions for the coefficients of Q 
obtained in the last section, a surprising number of simplifications occur, and 
the result has the relatively simple form 

G(s) = [~, (s)  ~,a(s)  ] (3.14) 
L~,~,(s) ~,~O(s)J 

C,,(s) = {e-s/[Z~s2 D(s )] ) f ' , ( s )  (3.15) 

Gta(s) = -C,a~(s) = {e- ' /[2~s2O(s)]}Pta(s)  (3.16) 

C, Oe(s) = {e-S/[2rrs2 ;~(s)]} P aa(s) (3.17) 

~'tt(s) = sQ;, - q~o(s)(C1 + Co~s) - C3 + Co/s (3.18) 

f~,a(s) = sQ~a + C2 (3.19) 

f~aa(s) = sQ'aa - %(s) (C1 + Co~s) + C4 + Cs/s (3.20) 

D(s)  = 1 - ( 2 D A s b l ) Q ~  + (C4 - �89 2 + Ca/s 3 

+ [Cpo(S)/S][-Q~ - Q'ea + ((23 - C4)/s - (Co + Cs)/s 21 

+ [~o2(S)/S~](Co + Cz/s)] (3.21) 

where the constants C are defined by 

Co = O~tO'~a- Q~aO~ 

C~ = O~tO'aa- O~aO'at 
= ' - -  ' a  

C2 Q,aa~ Q" ~ (3.22) 
/ ' 3 '  [ 1  /"3" /"3' ( 1  /"1 tt ' Ca = ~ , t z ~ a a -  Q ' a a ) -  ~ t a ~ Z z a t -  Qat) 

r t t  
C,  = Q~a - (Q[a + a2)Q'a~ + ( Q ,  + a~)Qaa 

Cs = - (O~a + a2)Q~t + (Q~, + a~)Q~a 
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After use of (2.23), etc., and considerable algebra, we find the surprisingly 
simple results 

Co = doy~(2bob2 + bl  2) (3.23) 

C1 = y12(bl 2 - 4do2D~ 2) - [b~d2 + (1 + bo)do] 2 (3.24) 

C2 = doy lb l  (3.25) 

Ca = 1Co - 6"1 (3,26) 

C4 = - 3 d o y l  - �88 + 6Q~(1 + bo - fla)/bl (3.27) 

(25 = 2b2doyl  + Co (3.28) 

where we have used the definitions (2.15) and (2.35). Extensive use of the 
relation 

bo~3 + b~2/6 = 2doy~DF 2 (3.29) 

was also made. 
The problem now is to obtain the coefficients of the pair correlation 

functions h , ,  h~a, h~a, hDea defined by Eq. (2.1), etc. A method which we believe 
is convenient computationally derives from the general inversion formula (~8~ 

f; 2,r2i~(p~pB)~/2h~e(r) = d k  k2jz(kR)[J~B(ik)  + ( - y J ~ e ( - i k ) ]  (3.30) 

where ~,/3 = i, d. For  the ion-ion correlations, l = 0; for ion-dipole, I = 1 ; 
and for dipole-dipole, l = O(A) and I = 2 (D). Herein(x) is the usual notation 
for the spherical Bessel functions, and the functions J~B(s) are the Laplace 
transforms of the functions J~e(r) defined by (2.8), (3.8). 

Clearly, from the definitions (3.1), (3.2), and (3.6), and also using (3.3), 

Z~(s) = bo/s - ( 2 r r / s ) H , ( s )  (3.31) 

= bo/s - ( 2 , r / s ) G , ( s )  (3.32) 

Z~( s )  = - b ~ / s  2 - (2~' /s)G,a(s)  (3.33) 

J~ ) = b ( / s  + 2b2/s 3 - (2rr/s)Gaa(s) (3.34) 

We need also the transform of the irreducible representation X = 1 : This is 
the same as in the pure dipole case, (~5~ and can be obtained from our expres- 
sions simply by setting bo, b~ = 0 and b~ --~ - b 2 / 2 :  

]~a(s) = bo/s - b~/s 3 - (2~/s)G'aa(s) (3.35) 

with 

G~a(s) = (e-~/2~rs2)(sq ' + q")/[1 - 9 z ( s )q '  - q~2(s)q"] (3.36) 

where q' and q" are defined by (2.33) and (2.34) with 

cp~ = (l/s2)(1 - s - e -9 ,  ~02 = (l/s3)(1 - s + s2 /2  - e - O  (3.37) 
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Summarizing, our  expressions are 

h , ( R )  = ( -  1/~rpo) d k  k j o ( k R ) [ I m  J ,( ik) l  (3.38) 

h~a(R) = (3/pOPD)l/2(2/rr) dk  k j l ( k R ) [ R e  ],d(ik)] (3.39) 

h~a(R) = (2/,rOa)(1/~/-3) d k  k jo (kR)  Im[2]•e(ik) + ]~a(ik)l (3.40) 

fo h~a(R) = - (2 /~pa) (10 /3 )  1'2 dk  k ja (kR)  Im[]~a(ik) - ]~ 

(3.41) 

To avoid numerical problems stemming from the discontinuity at r = 1, it is 
convenient to add and subtract a function with a known transform that  
eliminates this problem. Fortunately,  the discontinuities can be evaluated 
f rom Eq. (2.10), 

hu(1) = Q~/2rrpo (3.42) 

h~a(1) = -(3/p0pa)z/2(Q~a/2rr) (3.43) 

h~a(1) = [1/(27rpaa/'J)](2q'+ Q'aa) (3.44) 

hDa(1) = (1/2rrOa)(10/3)l/2(q ' - Q'aa) (3.45) 

A convenient function for this purpose is 

~(x) = 0, r < 1 
(3.46) 

cpz(x) = h~e(1)e-a~M -~ (l = 0, 1, 2) 

since 

(2pr) dk  T/!  j z (kR)[k / (A  2 + k2)] ~§ = e -  ~ x  z-1 (3.47) 

Let  us now evaluate the direct correlation function. We introduce the 
functions 

d . , ( r )  = - (~rr )  dS~B(r)/dr (3.48) 

where S~B(r) is given by (2.11). We get 

' a ' ~,(r )  = (1/2~r){alQ~ + 2Q,a + �89 2 + (Q~a)2]r} (3.49) 

4 ~( r ) 1 . . . .  ~_~ c~ , , q  . . . . .  = (1/27r)[-~(Q~Qa~ + Qa~Qaa)r - ~,~, ,ua~ + Q~aQaa)r ] (3.50) 

daa(r) = (1/2Tr){Q'~a -- -~[(Q~a) 2 + (Q~)z] + �89 + Q'~Q'a~) 

+ �89 ~ + (Q~)2]r - -~[(Q~a) 2 + (Q~,)~]r 8} (3.51) 
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After  considerable algebra,  it can be shown that  (~3) 

d.(r)  = (1/2rr)fdo2bo - dodsba + �89 - dsb~) 2 + b~2y~2]r} (3.52) 

%~(r) = (1/2-){[bodl - b d d J  + y~)](1/r )  + +[bldo 2 + 2b2ddr 

+ ~[bobado 2 - bz2dz + 2 b o b j ~  - 2b~b2(d22 + yz2)r2} (3.53) 

4. T H E R M O D Y N A M I C  PROPERTIES 

As is known,  the best  values of  the the rmodynamic  propert ies in the M S A  
are obta ined f rom the energy. Hoye  and StelP 19~ have given a very elegant, 
closed formula t ion  for  the the rmodynamic  propert ies  calculated f rom the 
internal energy : 

f E / V  = (1/4~r)(do2bo - dod2bl - 2d~2b2) (4.1) 

which can be checked to be identical with 

- f i E / V  = } [ ~ d 0 ) -  d,(0)] + �89 - daa(0)] - (b2/27r)(yl 2 - 1) 
(4.2) 

since 

d,(O) = (l127r)do(dobo - d2bz) (4.3) 

dad(0) = -(G/2rr)(dob~ + 2b2&) - b2y12/2~ (4.4) 

JFaa(O) = - b d z r  (4.5) 

Fo r  mos t  chemical applications, the relevant the rmodynamic  quantities are 
the excesses with respect  to the pure  solvent. F o r  the pure  solvent 

f Eo/ V = - d22b~~ /2rr (4.6) 

where b~2 ~ is the value of  (2.21) for  Po = 0. Thus,  for  infinite dilution, we 
recover Hoye  and Stell 's (2~ 

faE f (e-~o)  - 1 [  do ]~ ~ O _ l f O  
V - V - 8--~ \ ~ - - ~ ]  8~re~ ~ /3~ d~ (4.7) 

Here,  the superscript  0 means  that  po = 0, or that  the quant i ty  is taken for  
the pure solvent. Wer the im's  dielectric constant  is defined by 

ew = f32f~2/f~2, ew ~ = (f3~176176 6 (4.8) 

and the /30 are defined by (2.32) but  with b~ ~ instead of  b2. 

To  compute  the excess Helmhol tz  free energy, we follow again Ref. 14 (see 
also Ref. 21), to get 

f A / V  = - (1 /12rr ) [ -2do2bo  + 2doclzb~ + (Q~)2 

+ 2(Q;a) 2 + (Qia) 2 + 2(q') ~1 (4.9) 
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F o r  the l imit ing case with no dipoles  this fo rmula  is obviously  correct.  
In  the l imit  of  a pure,  we recover the result  of  Rushb rooke  et aI. ~22~ 

- f A o / V  _- (1/12~)[(QSd) 2 + 2(q')  21 

= [(b2~176176 ~ + �89176 (4.10) 

The excess chemical  potent ia l  can be evaluated  f rom (4.9). F o r  the ions, we get  

flz, = ~ ( f A / V ) / ~ p o  = (do/4rrpo)(dobo - d2bl) (4.11) 

while for the dipoles  

flza = 8 ( f A / V ) / a p a  = - (d2/47rOa)(2d2b2 + dobl) (4.12) 

The to ta l  excess Gibbs  free energy yields 

BIG/V = pot*, + palxa =- A E / V  (4.13) 

which agrees with the s tandard  M S A  result  tha t  the excess G ibbs  free energy 
is equal  to the excess internal  energy. 

Final ly ,  the osmot ic  coefficient can be ob ta ined  f rom the excess pressure 

and (4.12), 

f P  -= f ( E  - A ) / V  (4.14) 

A(~ = f p / X  O = (1/127r)[do2bo - 4dod2bl - 6dz2b~ + (Q~,)2 

+ 2(Q;a) 2 + (Q'aa) z + 2(q') 2] (4.15) 
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