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Mean Spherical Model for Hard Ions and Dipoles:
Thermodynamics and Correlation Functions

Fernando Vericat!'2 and Lesser Blum!
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The solution of the mean spherical model of a mixture of equal-size hard ions
and dipoles is reinvestigated. Simple expressions for the coefficients of the
Laplace transform of the pair correlation function and the other thermo-
dynamic properties are given.
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1. INTRODUCTION

In spite of the progress achieved in the theory of ionic solutions, the statistical
theory of ion-solvent interactions remains as one of the challenging problems
awaiting a simple, yet accurate solution.

The most accurate theory for systems with long-range forces seems to be
hypernetted chain equation (HNC),*® but this theory involves the resolution
of a highly nonlinear system of equations, and is very difficult. A simplified
version of it, the so-called linear hypernetted chain equation (LHNC),® which
is successful for hard dipoles, was applied to the case of the ion-dipole mixture
by Levesque et al.‘® for the infinite-dilution case.

We should also mention the work on the solution of the Poisson Boltz-
mann equation by Outhwaite® and the recent mean field theory of Adelman
and Chen,® which seems to be a promising approach.

The mean spherical approximation (MSA) 9 is a theory that yields very
simple expressions for the thermodynamic quantities, and which is reasonably
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accurate for ionic solutions. The major deficiency of this theory is that it
does not describe well the direct correlation function near the repulsive core
of particles. This deficiency can be removed by the inclusion of a short-ranged
exponential term.?%1

The solution of the MSA for the ion—dipole mixture was obtained by
Blum®® and Adelman and Deutch"® for the equal-size mixture, and by
Blum % for the unequal-size case.

In the present work, we give further analytic results for the equal-size
mixture of ions and dipoles. In Section 2 we review and complete some of the
results of previous work.?® In Section 3 we obtain the pair correlation
function on the MSA, while Section 4 is devoted to the thermodynamics of
the system.

2. SUMMARY OF PREVIOUS RESULTS

Our model consists of a mixture of equal-size, hard spherical ions of
charge ze (z; is the electrovalence, e is the elementary charge) and number
density p;, and hard, spherical solvent molecules with dipole moment u and
number density py. For further simplification we shall assume that there are
only two species of ions (positive and negative) and we shall designate their
concentrations by p. and p_. This assumption is not really necessary (equiva-
lent results for an arbitrary mixture of equal-size ions are easily obtained),
but will make our notation simpler.

Let us, furthermore, designate the direct pair correlation functions ¢;,(r)
and the indirect pair correlation functions #;,(r) by the generic symbol f£,(r).
For the restricted case, we have ion—~ion correlations £, . (r), f, _(r) = f_ . (¥),
and f_ _(r), and ion~dipole correlations f, ,(r) and f_,(r).

As is the case in the primitive model, the ternary mixture of the positive
and negative ions and the dipoles d can be reduced to a binary mixture if we
introduce

Julr) = S () = foo(O] = 2f- () = f-. ()] 2.0
fia(1,2) = 3{f+a(1,2) — f-4(1, 2)] 22

Following the notation of Wertheim,*® we expand the ion-dipole
correlation functions in the invariant combination of spherical harmonics¢®

fi(1,2) = =filr)(F-$2) (2.3)

Fad1,2) = = V3 3G -52) + ASI2)YHBEIBF-$)(F55) — (51-82)]
2.4
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where r is the center-to-center vector. The module of this vector is r, and # =
r/r is the unit vector in the center-to-center direction. Here e is the unit vector
in the directions of the dipole of molecule «.

The invariant expansion can be transformed into the irreducible repre-
sentation by choosing a reference frame in which 7 = z. This decouples the
Ornstein~Zernike equation into matrix sets for correlations of different
symmetry around the intermolecular axis, and is an essential step in the
solution process.”t®

We define
g;i,o(”) = 277P0fii(”), Po =P+ + p_ (2-5)
Poolr) = —25(papol "% f dr, fialry) 2.6)

%d,o(”) = ZWPd{_\_}—EJ. dry 11 f5u(ry)

() [T () e e

P ) = —2Wpd{% [ dnnrtien

b o[ Tannf3() - l]f;;(rl)} 3)

In the above expressions we used
P(r) = Jr) or S(r) 2.9)
The matrix J(r) is a transform of the indirect pair correlation function h(r),
and h(r) is a transform of the direct pair correlation function ¢(r).
In the Baxter factorization method, we introduce another correlation
function Q(r) through the factored Ornstein—Zernike equations (one set for
each value of x)

J(r) = Q(r) +Jw dr J(r — Q) (2.10)

S(r) = D) + Q@) + Jm dt Q()YQ*(r — 1) (2.11)

where, because of the fact that A(r) = O for r < 1 (1 = hard-core diameter),
Q(r) must be a polynomial of the second degree for r < 1, and a constant for
r =z 1: Thus

Q) = (r — DQ' + 3 — 12Q" — A, N ! 2.12)

= —A,

A\
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For the MSA closure
C(r) = —BU(r)

where S is the Boltzmann factor and U(r) is the potential interaction for
r > 1. The coefficients for the invariant expansions (2.1)-(2.4) are

Ug(r) = é/r, Ui(r) = eufr?, Ugpelt) = —(10/3)1/2M2/73 (2‘13)

From here, and uring the transforms (2.5) and (2.8), we get for the matrix D

, dp2e 2" 2 die " sgn(r)
D=1 .
ul—%[—dle“‘”' sgn(r) 0 ] (2.14)
where sgn(r) is the sign function, and
dy? = 4nBe?pqy (2.15)
dy? = §mBu’p, (2.16)
with B = 1/kT the Boltzmann factor and
dy = dud, 2.17)
(this notation is similar to Ref. 12).
It can be shown that for r < 1, J(r) must be of the form
by, 0 0 bl] {0 0]
J@r) = 2 2.1
") {0 bo’]+[——b1 ol T lo ) (2.18)
with
by = 277'Pof dry rihy(ry) (2.19)
1
by = 2n(pos/37 | drs ) (2.20)
1
by = 3n(2/15)"%p, [ dry )Ty @21
J1

where, as we defined them in (2.1) and (2.2), the function &,(r) is the ion-ion
pair correlation, h;,(r) is the ion~dipole pair correlation, and AZ,(r) is the
“second coeflicient of the dipole-dipole pair correlation. As we will see, b, b,
and b, are proportional to the charge—charge, charge-dipole, and dipole-
dipole interactions.
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The first step in the solution of the MSA for the mixture consists in
obtaining the coefficient Q as functions of the parameters by, by, b, [(2.19)-
(2.21)]. Writing

-{g ol e
we have, from Ref. 12, after some algebra,
Qi = —3[Q2 = Bs/Dr)* + (b:1/2D5)*] (2.23)
Qis = — Qu = (b:/4Ds")(Bs + A5 (2.24)
Que =6 — 12(1 + by)/Dr + (9/D[(1 + bo)/Dz)? + 5,2/8Dp%2  (2.25)
Furthermore, the second coefficient in (2.12) is
, 0 0
- [Q:;,- Q:;d] (220
with
Qi + 2Q4 + b1/ Dr (2.27)
205, =24 — 30(1 + bo)/Dr + 91 + bo)3/Dp® + b,2/4Dp? (2.28)
Finally, we recall that
A= [‘g ‘;2] (2.29)
with
a, = —(1/2D:2)(2Bs Dy — A) (2.30)
as = —(b/2D2B6)(DsBs + AJ2) (2.31)
(the expression for a, is slightly different from that of Ref. 12, which is not
correct).

In the above formulas we have used the definitions
Bs =1+ 3b,, Be = 1 — &by, Bio =1+ 5by, Bas = 1 — 55by
A= BS2 + ?}:blza AF = (1 + bo)bz + %b12
Dr = 3[(1 + bo)Bs — 56:%] = 3(1 + by — £Ay) (2.32)

For the representations y = 4, we get the results of Wertheim % for
the pure dipole case

g = —bofad/BE, (2.33)

q" = —byy: (2.34)
where we have used
Y1 = 186/18%2 (2.35)
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An interesting set of relations can be deduced from (2.11) and the analyticity
of C(r) atr = 0:

Qi = —3[(Qh + @) + (Qia + a2)*] (2.36)
O0u = —[(Qi + a)(30u — Q) + (Qie + @)(3 0 — Qad)]
2.37)
Qe — Qia = 3(3Qa — Qud)* + (3Qu — Qu)*] (2.38)

From (2.23)-(2.31) we see that the combinations of coefficients appearing in
the above set are particularly simple:

Qi+ a1 = —24 Bs/Dy (2.39)
Qi + a3 = =304 + Qu = —b,/2Dy (2.40)
Qs — Qaa = 6 — 3(1 + bo)/Dp = — Ag/2D; (241)

where we have used the definitions (2.32).
To obtain the actual values of the three parameters b, by, and b,, we
have to consider the particular boundary condition of the MSA

C(r)=-pUF), r<1 (2.42)
From (2.11), using the transforms (2.5)-(2.7), we get (see Ref. 12)
a12 + a22 = doz (243)
—-alei + az(l - Kdd) = —‘dgd2 (244)
gi + (1 - Kdd)2 - y12 + d22 (245)
where d, and d, are defined by (2.15) and
1
K = f dr Qus(r) (2.46)
0
= =305 + $§Qus (2.47)

From (2.43) and (2.44), and (2.25) and (2.26) of Ref. 12, we get the following
simple relation:

afs + ashi[2 = doy, A (2.48)

which can be rewritten as
Bs + (b1/)A = y: A(l + 432 (2.49)
with
A = asJa, = +(b1/286)[(A + 2D5B3)/(A — 2Dpfg)] (2.50)

We found that a very simple way of solving this problem is by assuming
values of b, and b, and solving (2.49) numerically for b,. It is clear that
0>by,>1and 0 < b, < 3.
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Once the values of b,, by, and b, are known, we can compute the corre-
sponding values of d, and d,.

Finally, if we combine (2.43) and (2.48) with the results of (2.22), etc.,
we obtain alternative expressions for the coefficients of the Baxter functions:

Qi = —3ldo(1 + bo) — b1do]* — 3b,%y,” (2.51)
QOis = Bebiyi® + (Bedy — 1zbido)bid; + (1 + bo)dy (2.52)
Qia = 2[—1 + Be*y:® + (Beda — 15b:140)7] (2.53)

3. PAIR CORRELATION FUNCTIONS
Consider again Eq. (2.10), and let us define

H(r) = —Gmal(r)jor, r>1 (3.1
F(r) = —(m) oJ(r)/or, r<1 3.2)
Since, for r < 1, J(r) is of the form?®
by 0 0 bl] 2[0 0]
== 3-
1) [0 bo'] " ’Lbl ol "o s, 3-3)
Then
10 =5
= 5= 3,
F0) =2 [bl ~2b2r] 34

We now extend F(r) to the entire range of 0 < r < o0. Then, following a
procedure similar to that of Heye and Blum@? [Section 2, Eq. (17)], we get,
from the derivative of (2.10),

G(r) = Q'(r)2= + flr dt G(r — 1)Q(z) 3.5

where we have also extended Q'(r) to values of ¥ > 1, and we used
G(r) = H(r) — F(r) 3.6)

Equation (3.5) is a convolution-type equation, which can be easily solved by
Laplace transformation

G(s) = 5 (6Q" + QT — Qs (37)

where Q' and Q” have been given by (2.22) and (2.26), while the Laplace
transform of the Baxter function (2.12)

K(s) = f “reX(r) (X=0) (3.8)
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has matrix elements

G = (1/)po(s) Qi — (1/s)(Q5s + a1) (3.9)
0ia(s) = (1/8)po(s) Qs — (1/s)(Qic + a3) (3.10)
0als) = (18)Po(s)( Qi + Quls) + (Us)— Qa + 3Q0) — (1/sH Q4 b
0aa(s) = (1/9)po(s)(Qia + Qlafs) + (1/s)(— Qi + $Qaa) — (/5% Qaa

(3.12)

go = (1/s)(1 — &™) (3.13)

The algebra involved in carrying out the calculations indicated by (3.7) is
considerable. However, using the new expressions for the coefficients of Q
obtained in the last section, a surprising number of simplifications occur, and
the result has the relatively simple form

60 = [e1> cute] @19
Gu(s) = {e*/[2ms* D(s)}T(s) (3.15)
Giu(s) = —Guls) = {e~5/[2ms2D(s)]}Tials) (3.16)
G(s) = {e~*/[2ms2D(s)PTaals) (3.17)
Tu(s) = 504 — po(8)(Cy + Cofs) — Cs + Cofs (3.18)
Fiu(s) = sQia + Cq (3.19)
T(5) = 5Qh — po(8)(Cy + Cofs) + Cy + Css (3.20)

D(s) = 1 — 2Dg/sb)) Q4 + (Cs — 3Cs)[s® + Csfs®
+ [po(8)/s][— Qi — Qia + (Cs — Cy)ls — (Co + C5)/s?]
+ {po®(5)/s*ICo + Cifs)] (3.21)
where the constants C are defined by

Co = Qz{ngd e Q{ngi
G = QéiQ:id - Q{dezi
Cy = Qlaay — @iy
Gy = Q;i(%di - Q:id) - Qid(%Q:;t - Q:ii)
Cy = Qia — (Qfs + a)Qu + (Qi + a1) Qg
Cs = —(Qiz + a) Q4 + (Qis + a1)Qaa

(3.22)

i
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After use of (2.23), etc., and considerable algebra, we find the surprisingly
simple results

Co = doy,(2bobs + 6.%) (3.23)
Cy = 3.%(b® — 4d2Dp?) — [bydy + (1 + bo)d,)? (3.29)
Cy, = doy, b, (3.25)
Cs =3C — Gy (3.26)
Cy = =3doy; ~ 3Co + 604(1 + by — B3)/by (3.27)
Cs = 2bydoy, + C, (3.28)

where we have used the definitions (2.15) and (2.35). Extensive use of the
relation

boBs + b12/6 = 2d0y1DF2 (3.29)

was also made.

The problem now is to obtain the coefficients of the pair correlation
functions Ay, fug, H54, hZ; defined by Eq. (2.1), etc. A method which we believe
is convenient computationally derives from the general inversion formula *®

27%i(paps) " *has(r) =fo dk Kk R oK) + (=)es(—iK)]  (3.30)

where o, 8 = i, d. For the ion-ion correlations, / = 0; for ion—dipole, / = 1;
and for dipole~dipole, I = 0(A) and / = 2 (D). Here ji(x) is the usual notation
for the spherical Bessel functions, and the functions J,,(s) are the Laplace
transforms of the functions J,,(r) defined by (2.8), (3.8).

Clearly, from the definitions (3.1), (3.2), and (3.6), and also using (3.3),

Ju(s) = bofs — (2m/s)H(s) (3.31)

= bols — (2m[s)Gils) (3.32)
Jia(s) = —byfs? — (2m/5)Gi(s) (3.33)
J9A(s) = by'[s + 2by/s® — (2m[s)Gals) (3.39)

We need also the transform of the irreducible representation y = 1: This is
the same as in the pure dipole case,*® and can be obtained from our expres-
sions simply by setting b,, b; = 0 and b, — —b,/2:
Jaa(s) = bofs — bofs® — 2m[5)Gja(s) (3.35)
with
Gaa(s) = (e7*2msD)(sq" + ¢")/[1 — @:1(5)g’ — @a(s)g"]  (3.36)
where ¢" and ¢g” are defined by (2.33) and (2.34) with

@ = {1/sH(1 — s — e7%), oo = (1/s%(1 — s + §%/2 — ™% (3.37)
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Summarizing, our expressions are

ha(R) = (=1/mpo) [ dlic Kok BT T 0] (3.38)
hia(R) = (3/popo)*(2fm) f dk ks (kR)[Re (k)] (3.39)
2(R) = (2/mpa)(1/V3) f " i Ko(lR) Im[2T300) + T3] (3.40)

hio(R) = —(2[mpy)(10/3)12 J. dk kjo(kR) Im[J3,(ik) — J§,(ik)]
o
(3.41)
To avoid numerical problems stemming from the discontinuity at r = 1, it is
convenient to add and subtract a function with a known transform that

eliminates this problem. Fortunately, the discontinuities can be evaluated
from Eq. (2.10), :

hii(l) = Qi,i/27TP0 (3-42)
hia(1) = —(3/popa) X Qlaf2m) (3.43)
4a(1) = [1/QmpeVII2g + Q) (3.44)
1) = (1/2mpa)(10/3)3(q" — QL) (3.45)

A convenient function for this purpose is

p(x) =0, r<l1

Pi(x) = hgp(De2x-1  (1=0,1,2) (3.46)

since
(2/7r)f0 dk 211 jkR)[k/(A2 + kB)]'HE = e~ oxxi—t (3.47)

Let us now evaluate the direct correlation function. We introduce the
functions

bug(r) = —(&mr) dSus(r)/dr (3.43)
where S,4(r) is given by (2.11). We get
blr) = (12m){a, Qi + a5 Qia + 3(Q)i)* + (Qid)*Ir} (3.49)
bia(r) = (12m)[H Qi 0 + QuiQua)r — $(Q2i Q4 + QiaQia)r’] (3.50)

taa(r) = (1/2m){Qaa — $1(Qaa)® + (Q2)°] + H Q2 Qis + Q4 Q)
-+ 3H(Q)? + (Qa)?)r — #4l(Q4a)? + (Qa)°1r%) (3.51)
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After considerable algebra, it can be shown that®®
£y(r) = (12m)}{dy?by — dodaby + {(dobo — dob))? + b2y, %]r} (3.52)

€a(r) = (1/2m){[bod; — by(de® + »:)I(1/r) + Hb:ds® + 2b2d,]r
6[b0b1dg - b12d]_ + 2b0b2d1 - 2b1b2(d2 + ylz)r2} (3.53)

4. THERMODYNAMIC PROPERTIES

As is known, the best values of the thermodynamic properties in the MSA
are obtained from the energy. Hoye and Stell®® have given a very elegant,
closed formulation for the thermodynamic properties calculated from the
internal energy:

BE/V = (1/4m)(dy®by — dodob; — 2d,%bs) 4.1)
which can be checked to be identical with

— BE|V = J[H(0)— £4(0)] + $[#24(0) — £0a(0)] — (62/2m)(3:® ~ 1)

(4.2)
since
511‘(0) = (I/ZW)do(dobo - d2b1) (4-3)
£40) = —(do/27)(doby + 2b2dy) — boy,?/2m (4.4)
Hgo(0) = —byfm 4.5)

For most chemical applications, the relevant thermodynamic quantities are
the excesses with respect to the pure solvent. For the pure solvent

BEV = —dy2b 2w (4.6)

where by is the value of (2.21) for py = 0. Thus, for infinite dilution, we
recover Hoye and Stell’s 20

B?/E BE — - E) _ -1 (V% )s B swewol gg

Here, the superscript 0 means that p, = 0, or that the quantity is taken for
the pure solvent. Wertheim’s dielectric constant is defined by

fw = 532:3%2//3?27 ey’ = (530)2(/%2)4/(/9?2)6 (4'8)
and the 8,° are defined by (2.32) but with 5% instead of b,.

dy® 4.7

To compute the excess Helmholtz free energy, we follow again Ref. 14 (see
also Ref. 21), to get

/3A/V = _(1/1277)[_2d02b0 + 2dodoby + (Qz/z)z
+ 2Qia)? + (Qad)® + 2(g)%] 4.9)
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For the limiting case with no dipoles this formula is obviously correct.
In the limit of a pure, we recover the result of Rushbrooke et al.?®

—BA°V = (1/12m)[(Qaa)* + 2(¢)*]
= [(62")?/37]1(B22)*/(B6°)* + 2(B34)*/(B2)°] (4.10)

The excess chemical potential can be evaluated from (4.9). For the ions, we get

By = 8(BA[V)]0po = (dof4mpo)(dobo — db:) (4.11)
while for the dipoles
Bua = 8(BAIV)|ops = —(dofdmps)(2doby + doby) 4.12)
The total excess Gibbs free energy yields
BGIV = popi + papta = DEV (4.13)

which agrees with the standard MSA result that the excess Gibbs free energy
is equal to the excess internal energy.
Finally, the osmotic coefficient can be obtained from the excess pressure
and (4.12),
BP = B(E — AV (4.14)

A¢ = BP[Zp = (1/12m)[ds®by — 4dodoby — 647Dy + (Q5)°
+ 2(Q1)* + (Qad)* + 2Aq)] (4.15)
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